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Abstract

This article is concerned with stochastic differential equations driven by a d dimen-
sional fractional Brownian motion with Hurst parameter H > 1/4, understood in the
rough paths sense. Whenever the coefficients of the equation satisfy a uniform ellip-
ticity condition, we establish a sharp local estimate on the associated control distance
function and a sharp local lower estimate on the density of the solution.
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1 Introduction

In this paper, we consider the following stochastic differential equation (SDE)

Xt = x+
d∑
i=1

ˆ t

0

Vi(Xs)dB
i
s, t ∈ [0, 1], (1.1)

where x ∈ RN , V1, · · · , Vd are C∞-bounded vector fields on RN and {Bt}0≤t≤1 is an d-
dimensional fractional Brownian motion. We assume throughout the paper that in (1.1) the
fractional Brownian motion has Hurst parameter H ∈ (1/4, 1) and that the vector fields Vi’s
satisfy the uniform ellipticity condition. When H ∈ (1/2, 1), the above equation is under-
stood in Young’s sense [29]; and when H ∈ (1/4, 1/2) stochastic integrals in equation (1.1)
are interpreted as rough path integrals (see, e.g., [15, 16]) which extends the Young’s inte-
gral. Existence and uniqueness of solutions to the above equation can be found, for example,
in [23]. In particular, when H = 1

2
, this notion of solution coincides with the solution of the

corresponding Stratonovitch stochastic differential equation.
It is now well understood that under Hörmander’s condition the law of the solution Xt

to equation (1.1) admits a smooth probability density p(t, x, y) with respect to the Lebesgue
measure on RN (cf. [2, 6, 13, 7]). Moreover, it is shown in [3] that, under uniform ellipticity
condition, the following global upper bound holds,

p(t, x, y) ≤ C
1

tNH
exp

[
−|x− y|

(2H+1)∧2

Ct2H

]
. (1.2)

Clearly (1.2) is of Gaussian type and sharp when H ≥ 1/2; while it only gives a sub-
Gaussian bound when H < 1/2. Whether one should still expect a Gaussian upper bound
when H < 1/2 remains one of the major open problems in the study of the density function.
Another open problem in this direction is to obtain a sharp lower bound for the density
p(t, x, y).

On the other hand, the Varadhan type estimate established in [4] shows that

lim
t→0

t2H log p(t, x, y) = −1

2
d(x, y)2. (1.3)

In the above, the control distance function d(x, y) is given by

d2(x, y) = inf{‖h‖2
H̄; Φ1(x;h) = y}, (1.4)

where H̄ is the Cameron-Martin space of B and Φt(x; ·) : H̄ → C[0, 1] is the deterministic
Itô map associated to equation (1.1). Although one can not directly equate the Varadhan
estimate in (1.3) to the upper bound (or a similar lower bound) in (1.2), it naturally motivates
the following questions:

Q1. Is the control distance d(x, y) comparable to the Euclidean distance |x− y| ?

2



Q2. Can we use techniques developed in proving (1.3) to obtain some information on the
bounds of p(t, x, y) ? [Here we are in particular interested in a lower bound, since
progress on the lower bound of the density is limited in the literature.]

Our investigation in the present article shows an effort in answering the above two ques-
tions, at least partially. More specifically, our discovery is reported in the following two
theorems.

Theorem 1.1. Let d be the control distance given in (1.4). Under uniform ellipticity condi-
tions (see the forthcoming equation (3.1) for a more explicit version), there exist constants
C, δ > 0, such that

1

C
|x− y| ≤ d(x, y) ≤ C|x− y| , (1.5)

for all x, y ∈ RN with |x− y| < δ.

Remark 1.2. Theorem (1.1) reflects our attempt in answering Q1. The control distance
d(x, y) plays an important role in various analytic properties of X in equation (1.1), for
example, the large deviations of Xt. Due to the complexity of the Cameron-Martin structure
of B, the control distance d(x, y) is far from being a metric (for example, it is not clear
whether it satisfies the triangle inequality) and its shape is not clear. Our investigation
shows that d(x, y), as a function, is locally comparable to the Euclidean distance. The
authors believe that a global equivalence would not hold in general.

Our second result concerns Q2 above and aims at obtaining a lower bound of the density
function. It is phrased below in a slightly informal way, and we refer to Theorem 3.4 for a
complete statement.

Theorem 1.3. Let p(t, x, y) be the probability density of Xt. Under uniform ellipticity
conditions on the vector fields in V , there exist some constants C, τ > 0 such that

p(t, x, y) ≥ C

tNH
, (1.6)

for all (t, x, y) ∈ (0, 1]× RN × RN with |x− y| ≤ tH , and t < τ.

Remark 1.4. Relation (1.6) presents a local lower bound, both in time and space, for the
density function pt(x, y) . It is clearly sharp by a quick examination of the case when Xt is
an N -dimensional fractional Brownian motion, i.e. when N = d and V = Id.

In order to summarize the methodology we have followed for Theorem 1.1 and 1.3, we
should highlight two main ingredients:
(i) Some thorough analytic estimates concerning the Cameron-Martin space related to frac-
tional Brownian motions, which are mostly be useful in order to get proper estimates on the
distance d defined by (1.4).
(ii) A heavy use of Malliavin calculus, Girsanov’s theorem in a fBm context and large devi-
ations techniques are invoked for our local lower bound (1.6).
Our analysis relies thus heavily on the particular fBm setting. Generalizations to a broader
class of Gaussian processes seem to be nontrivial and are left for a subsequent publication.
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Remark 1.5. As one will see below, our argument for both Theorem 1.1 and 1.3 hinges
crucially on uniform ellipticity of the vector fields. The hypoelliptic case is substantially
harder and requires a completely different approach, which will be studied in a companion
paper [12].

Remark 1.6. For sake of clarity and conciseness, we have restricted most of our analysis to
equation (1.1), that is an equation with no drift. However, we shall give some hints at the
end of the paper about how to extend our results to more general contexts.

Organization of the present paper. In Section 2, we present some basic notions from the
analysis of fractional Brownian motion. In particular, we provide substantial detail on the
Cameron-Martin space of a fractional Brownian motion. This is needed in order to establish
the comparison between control distance and the Euclidean distance and will also be helpful
for later references. Our main results Theorem 1.1 and 1.3 will then be proved in Section 3.

2 Preliminary results.

This section is devoted to some preliminary results on the Cameron-Martin space related
to a fractional Brownian motion. We shall also recall some basic facts about rough paths
solutions to noisy equations.

2.1 The Cameron-Martin subspace of fractional Brownian motion.

Let us start by recalling the definition of fractional Brownian motion.

Definition 2.1. A d-dimensional fractional Brownian motion with Hurst parameter H ∈
(0, 1) is an Rd-valued continuous centered Gaussian process Bt = (B1

t , . . . , B
d
t ) whose covari-

ance structure is given by

E[Bi
sB

j
t ] =

1

2

(
s2H + t2H − |s− t|2H

)
δij , R(s, t)δij. (2.1)

This process is defined and analyzed in numerous articles (cf. [10, 27, 28] for instance),
to which we refer for further details. In this section, we mostly focus on a proper definition
of the Cameron-Martin subspace related to B. We also prove two general lemmas about this
space which are needed for our analysis of the density p(t, x, y). Notice that we will frequently
identify a Hilbert space with its dual in the canonical way without further mentioning.

In order to introduce the Hilbert spaces which will feature in the sequel, consider a one
dimensional fractional Brownian motion {Bt : 0 ≤ t ≤ 1} with Hurst parameter H ∈ (0, 1).
The discussion here can be easily adapted to the multidimensional setting with arbitrary
time horizon [0, T ]. Denote W as the space of continuous paths w : [0, 1]→ R1 with w0 = 0.
Let P be the probability measure over W under which the coordinate process Bt(w) = wt
becomes a fractional Brownian motion. Let C1 be the associated first order Wiener chaos,
i.e. C1 , Span{Bt : 0 ≤ t ≤ 1} in L2(W,P).
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Definition 2.2. Let B be a one dimensional fractional Brownian motion as defined in (2.1).
Define H̄ to be the space of elements h ∈ W which can be written as

ht = E[BtZ], 0 ≤ t ≤ 1, (2.2)

where Z ∈ C1. We equip H̄ with an inner product structure given by

〈h1, h2〉H̄ , E[Z1Z2], h1, h2 ∈ H̄,

whenever h1, h2 are defined by (2.2) for two random variables Z1, Z2 ∈ C1. The Hilbert space
(H̄, 〈·, ·〉H̄) is called the Cameron-Martin subspace of the fractional Brownian motion.

One of the advantages of working with fractional Brownian motion is that a convenient
analytic description of H̄ in terms of fractional calculus is available (cf. [10]). Namely recall
that given a function f defined on [a, b], the right and left fractional integrals of f of order
α > 0 are respectively defined by

(Iαa+f)(t) ,
1

Γ(α)

ˆ t

a

f(s)(t− s)α−1ds, and (Iαb−f)(t) ,
1

Γ(α)

ˆ b

t

f(s)(s− t)α−1ds. (2.3)

In the same way the right and left fractional derivatives of f of order α > 0 are respectively
defined by

(Dα
a+f)(t) ,

(
d

dt

)[α]+1

(I
1−{α}
a+ f)(t), and (Dα

b−f)(t) ,

(
− d

dt

)[α]+1

(I
1−{α}
b− f)(t), (2.4)

where [α] is the integer part of α and {α} , α− [α] is the fractional part of α. The following
formula for Dα

a+ , valid for α ∈ (0, 1), will be useful for us:

(Dα
a+f)(t) =

1

Γ(1− α)

(
f(t)

(t− a)α
+ α

ˆ t

a

f(t)− f(s)

(t− s)α+1
ds

)
, t ∈ [a, b]. (2.5)

The fractional integral and derivative operators are inverse to each other. For this and other
properties of fractional derivatives, the reader is referred to [17].

Let us now go back to the construction of the Cameron-Martin space for B, and proceed
as in [10]. Namely define an isomorphism K between L2([0, 1]) and IH+1/2

0+ (L2([0, 1])) in the
following way:

Kϕ ,

CH · I
1
0+

(
tH−

1
2 · IH−

1
2

0+

(
s

1
2
−Hϕ(s)

)
(t)
)
, H > 1

2
;

CH · I2H
0+

(
t

1
2
−H · I

1
2
−H

0+

(
sH−

1
2ϕ(s)

)
(t)
)
, H ≤ 1

2
,

(2.6)

where cH is a universal constant depending only on H. One can easily compute K−1 from
the definition of K in terms of fractional derivatives. Moreover, the operator K admits a
kernel representation, i.e. there exits a function K(t, s) such that

(Kϕ)(t) =

ˆ t

0

K(t, s)ϕ(s)ds, ϕ ∈ L2([0, 1]).
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The kernel K(t, s) is defined for s < t (taking zero value otherwise). One can write down
K(t, s) explicitly thanks to the definitions (2.3) and (2.4), but this expression is not included
here since it will not be used later in our analysis. A crucial property for K(t, s) is that

R(t, s) =

ˆ t∧s

0

K(t, r)K(s, r)dr, (2.7)

where R(t, s) is the fractional Brownian motion covariance function introduced in (2.1). This
essential fact enables the following analytic characterization of the Cameron-Martin space
in [10, Theorem 3.1].

Theorem 2.3. Let H̄ be the space given in Definition 2.2. As a vector space we have
H̄ = I

H+1/2

0+ (L2([0, 1])), and the Cameron-Martin norm is given by

‖h‖H̄ = ‖K−1h‖L2([0,1]). (2.8)

In order to define Wiener integrals with respect to B, it is also convenient to look at
the Cameron-Martin subspace in terms of the covariance structure. Specifically, we define
another space H as the completion of the space of simple step functions with inner product
induced by

〈1[0,s],1[0,t]〉H , R(s, t). (2.9)

The space H is easily related to H̄. Namely define the following operator

K∗ : H → L2([0, 1]), such that 1[0,t] 7→ K(t, ·). (2.10)

We also set
R , K ◦ K∗ : H → H̄, (2.11)

where the operator K is introduced in (2.6). Then it can be proved that R is an isometric
isomorphism (cf. Lemma 2.7 below for the surjectivity of K∗). In addition, under this
identification, K∗ is the adjoint ofK, i.e. K∗ = K∗◦R. This can be seen by acting on indicator
functions and then taking limits. As mentioned above, one advantage about the space H is
that the fractional Wiener integral operator I : H → C1 induced by 1[0,t] 7→ Bt is an isometric
isomorphism. According to relation (2.7), Bt admits a Wiener integral representation with
respect to an underlying Wiener process W :

Bt =

ˆ t

0

K(t, s)dWs. (2.12)

Moreover, the process W in (2.12) can be expressed as a Wiener integral with respect to B,
that is Ws = I((K∗)−11[0,s]) (cf. [27, relation (5.15)]).

Let us also mention the following useful formula for the natural pairing between H and
H̄. Denote by CH−([0, 1];Rd) the space of α-Hölder continuous path for all α < H.

Lemma 2.4. Let H be the space defined as the completion of the indicator functions with
respect to the inner product (2.9). Also recall that H̄ is introduced in Definition 2.2. Then
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through the isometric isomorphism R defined by (2.11), the natural pairing between H and
H̄ is given by

H〈f, h〉H̄ =

ˆ 1

0

fs dhs, (2.13)

for all f ∈ CH−([0, 1];Rd). In the above, the integral on the right-hand side is understood in
Young’s sense, thanks to Proposition 2.6 below.

Proof. First of all, let h ∈ H̄ and g ∈ H be such that R(g) = h. It is easy to see that g
can be constructed in the following way. According to Definition 2.2, there exists a random
variable Z in the first chaos C1 such that ht = E[BtZ]. The element g ∈ H is then given via
the Wiener integral isomorphism between H and C1, that is, the element g ∈ H such that
Z = I(g). Also note that we have ht = E[Bt I(g)].

Now consider f ∈ H with bounded variation. The natural pairing between f and h is
thus given by

H〈f, h〉H̄ = H〈f, g〉H = E[Z · I(f)].

A direct application of Fubini’s theorem then yields:

H〈f, h〉H̄ = E[Z · I(f)] = E
[
Z ·
ˆ 1

0

fsdBs

]
=

ˆ 1

0

fs E[ZdBs] =

ˆ 1

0

fsdhs. (2.14)

For a general f ∈ H, let fn be the dyadic linear approximation of f . By the previous
argument, (2.14) holds for fn. On the other hand, thanks to our Hölder assumption on f ,
fn converges to f in α-Hölder norm for any α < H. Hence H〈fn, h〉H̄ converges to H〈f, h〉H̄,
thanks to [27, Lemma 5.1.1] for H > 1/2 and to the inclusion Cγ([0, 1];Rd) ⊂ H for all
γ > 1/2−H (see e.g. [27, page 284]) for H < 1/2. Finally,

´ 1

0
fns dhs converges to

´ 1

0
fsdhs

by standard Young’s estimate. The proof is thus completed.

The space H can also be described in terms of fractional calculus (cf. [28]), since the
operator K∗ defined by (2.10) can be expressed as

(K∗f)(t) =

CH · t
1
2
−H ·

(
I
H− 1

2

1−

(
sH−

1
2f(s)

))
(t), H > 1

2
;

CH · t
1
2
−H ·

(
D

1
2
−H

1−

(
sH−

1
2f(s)

))
(t), H ≤ 1

2
.

(2.15)

Starting from this expression, it is readily checked that when H > 1/2 the space H coincides
with the following subspace of the Schwartz distributions S ′:

H =
{
f ∈ S ′; t1/2−H · (IH−1/2

1− (sH−1/2f(s)))(t) is an element of L2([0, 1])
}
. (2.16)

In the case H ≤ 1/2, we simply have

H = I
1/2−H
1− (L2([0, 1])). (2.17)
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Remark 2.5. As the Hurst parameter H increases, H gets larger (and contains distribu-
tions when H > 1/2) while H̄ gets smaller. This fact is apparent from Theorem 2.3 and
relations (2.16)-(2.17). When H = 1/2, the process Bt coincides with the usual Brown-
ian motion. In this case, we have H = L2([0, 1]) and H̄ = W 1,2

0 , the space of absolutely
continuous paths starting at the origin with square integrable derivative.

Next we mention a variational embedding theorem for the Cameron-Martin subspace H̄
which will be used in a crucial way. The case when H > 1/2 is a simple exercise starting
from the definition (2.2) of H̄ and invoking the Cauchy-Schwarz inequality. The case when
H ≤ 1/2 was treated in [14]. From a pathwise point of view, this allows us to integrate
a fractional Brownian path against a Cameron-Martin path or vice versa (cf. [29]), and to
make sense of ordinary differential equations driven by a Cameron-Martin path (cf. [21]).

Proposition 2.6. If H > 1
2
, then H̄ ⊆ CH

0 ([0, 1];Rd), the space of H-Hölder continuous
paths. If H ≤ 1

2
, then for any q > (H + 1/2)−1, we have H̄ ⊆ Cq-var

0 ([0, 1];Rd), the space
of continuous paths with finite q-variation. In addition, the above inclusions are continuous
embeddings.

Finally, we prove two general lemmas on the Cameron-Martin subspace that are needed
later on. These properties do not seem to be contained in the literature and they require
some care based on fractional calculus. The first one claims the surjectivity of K∗ on properly
defined spaces.

Lemma 2.7. Let H ∈ (0, 1), and consider the operator K∗ : H → L2([0, 1]) defined by (2.10).
Then K∗ is surjective.

Proof. If H > 1/2, we know that the image of K∗ contains all indicator functions (cf. [27,
Equation (5.14)]). Therefore, K∗ is surjective.

IfH < 1/2, we first claim that the image ofK∗ contains functions of the form t1/2−Hp(1−t)
where p(t) is a polynomial. Indeed, given an arbitrary β ≥ 0, consider the function

fβ(t) , t
1
2
−H(1− t)β+ 1

2
−H .

It is readily checked that D
1
2
−H

1− fβ ∈ L2([0, 1]), and hence fβ ∈ I
1
2
−H

1− (L2([0, 1])) = H. Using
the analytic expression (2.15) for K∗, we can compute K∗fβ explicitly (cf. [17, Chapter 2,
Equation (2.45)]) as

(K∗fβ)(t) = CH
Γ
(
β + 3

2
−H

)
Γ(β + 1)

t
1
2
−H(1− t)β.

Since β is arbitrary and K∗ is linear, the claim follows.
Now it remains to show (with a change of variable) that the space of functions of the

form (1 − t)
1
2
−Hp(t) with p(t) being a polynomial is dense in L2([0, 1]). To this end, let

ϕ ∈ C∞c ((0, 1)). Then ψ(t) , (1 − t)−(1/2−H)ϕ(t) ∈ C∞c ((0, 1)). According to Bernstein’s
approximation theorem, for any ε > 0, there exists a polynomial p(t) such that

‖ψ − p‖∞ < ε,
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and thus
sup

0≤t≤1
|ϕ(t)− (1− t)

1
2
−Hp(t)| < ε.

Therefore, functions in C∞c ((0, 1)) (and thus in L2([0, 1])) can be approximated by functions
of the desired form.

Our second lemma gives some continuous embedding properties for H and H̄ in the
irregular case H < 1/2, whose proof relies on Lemma 2.7.

Lemma 2.8. For H < 1/2, the inclusions H ⊆ L2([0, 1]) and W 1,2
0 ⊆ H̄ are continuous

embeddings.

Proof. For the first assertion, let f ∈ H. We wish to prove that

‖f‖L2([0,1]) ≤ CH‖f‖H. (2.18)

Towards this aim, define ϕ , K∗f , where K∗ is defined by (2.10). Observe that K∗ :
H → L2([0, 1]) and thus f ∈ L2([0, 1]). By solving f in terms of ϕ using the analytic
expression (2.15) for K∗, we have

f(t) = CHt
1
2
−H
(
I

1
2
−H

1−

(
sH−

1
2ϕ(s)

))
(t). (2.19)

We now bound the right hand side of (2.19). Our first step in this direction is to notice that
according to the definition (2.3) of fractional integral we have∣∣∣(I 1

2
−H

1− (sH−
1
2ϕ(s))

)
(t)
∣∣∣ = CH

∣∣∣∣ˆ 1

t

(s− t)−
1
2
−HsH−

1
2ϕ(s)ds

∣∣∣∣
≤ CH

ˆ 1

t

(s− t)−
1
2
−HsH−

1
2 |ϕ(s)|ds

= CH

ˆ 1

t

(s− t)−
1
4
−H

2

(
(s− t)−

1
4
−H

2 sH−
1
2 |ϕ(s)|

)
ds.

Hence a direct application of Cauchy-Schwarz inequality gives

∣∣∣(I 1
2
−H

1− (sH−
1
2ϕ(s))

)
(t)
∣∣∣ ≤ CH

(ˆ 1

t

(s− t)−
1
2
−Hds

) 1
2
(ˆ 1

t

(s− t)−
1
2
−Hs2H−1|ϕ(s)|2ds

) 1
2

= CH(1− t)
1
2( 1

2
−H)

(ˆ 1

t

(s− t)−
1
2
−Hs2H−1|ϕ(s)|2ds

) 1
2

, (2.20)

where we recall that CH is a positive constant which can change from line to line. Therefore,
plugging (2.20) into (2.19) we obtain

‖f‖2
L2([0,1]) ≤ CH

ˆ 1

0

(
t1−2H(1− t)

1
2
−H
ˆ 1

t

(s− t)−
1
2
−Hs2H−1|ϕ(s)|2ds

)
dt.
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We now bound all the terms of the form sβ with β > 0 by 1. This gives

‖f‖2
L2([0,1]) ≤ CH

ˆ 1

0

dt

ˆ 1

t

(s− t)−
1
2
−H |ϕ(s)|2ds = CH

ˆ 1

0

|ϕ(s)|2ds
ˆ s

0

(s− t)−
1
2
−Hdt

= CH

ˆ 1

0

s
1
2
−H |ϕ(s)|2ds ≤ CH‖ϕ‖2

L2([0,1]) = CH‖f‖2
H,

which is our claim (2.18).
For the second assertion about the embedding of W 1,2

0 in H̄, let h ∈ W 1,2
0 . We thus also

have h ∈ H̄ and we can write h = Kϕ for some ϕ ∈ L2([0, 1]). We first claim that
ˆ 1

0

f(s)dh(s) =

ˆ 1

0

K∗f(s)ϕ(s)ds (2.21)

for all f ∈ H. This assertion can be reduced in the following way: since H ↪→ L2([0, 1]) con-
tinuously and K∗ : H → L2([0, 1]) is continuous, one can take limits along indicator functions
in (2.21). Thus it is sufficient to consider f = 1[0,t] in (2.21). In addition, relation (2.21) can
be checked easily for f = 1[0,t]. Namely we have

ˆ 1

0

1[0,t](s)dh(s) = h(t) =

ˆ t

0

K(t, s)ϕ(s)ds =

ˆ 1

0

(
K∗1[0,t]

)
(s)ϕ(s)ds.

Therefore, our claim (2.21) holds true. Now from Lemma 2.7, if ϕ ∈ L2([0, 1]) there exists
f ∈ H such that ϕ = K∗f . For this particular f , invoking relation (2.21) we get

ˆ 1

0

f(s)dh(s) = ‖ϕ‖2
L2([0,1]). (2.22)

But we also know that

‖ϕ‖L2([0,1]) = ‖h‖H̄ = ‖f‖H, and thus ‖ϕ‖2
L2([0,1]) = ‖h‖H̄‖f‖H. (2.23)

In addition recall that the W 1,2 norm can be written as

‖h‖W 1,2 = sup
ψ∈L2([0,1])

∣∣∣´ 1

0
ψ(s)dh(s)

∣∣∣
‖ψ‖L2([0,1])

Owing to (2.22) and (2.23) we thus get

‖h‖W 1,2 ≥
´ 1

0
f(s)dh(s)

‖f‖L2([0,1])

=
‖h‖H̄‖f‖H
‖f‖L2([0,1])

≥ CH‖h‖H̄,

where the last step stems from (2.18). The continuous embedding W 1,2
0 ⊆ H̄ follows.
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2.2 Malliavin calculus for fractional Brownian motion.

In this section we review some basic aspects of Malliavin calculus and set up corresponding
notations. The reader is referred to [27] for further details.

We consider the fractional Brownian motion B = (B1, . . . , Bd) as in Definition (2.1),
defined on a complete probability space (Ω,F ,P). For sake of simplicity, we assume that F
is generated by {Bt; t ∈ [0, T ]}. An F -measurable real valued random variable F is said to
be cylindrical if it can be written, with some m ≥ 1, as

F = f (Bt1 , . . . , Btm) , for 0 ≤ t1 < · · · < tm ≤ 1,

where f : Rm → R is a C∞b function. The set of cylindrical random variables is denoted
by S.

The Malliavin derivative is defined as follows: for F ∈ S, the derivative of F in the
direction h ∈ H is given by

DhF =
m∑
i=1

∂f

∂xi
(Bt1 , . . . , Btm) hti .

More generally, we can introduce iterated derivatives. Namely, if F ∈ S, we set

Dk
h1,...,hk

F = Dh1 . . .DhkF.

For any p ≥ 1, it can be checked that the operator Dk is closable from S into Lp(Ω;H⊗k).
We denote by Dk,p(H) the closure of the class of cylindrical random variables with respect
to the norm

‖F‖k,p =

(
E [|F |p] +

k∑
j=1

E
[∥∥DjF

∥∥p
H⊗j

]) 1
p

, (2.24)

and we also set D∞(H) = ∩p≥1 ∩k≥1 Dk,p(H).

Estimates of Malliavin derivatives are crucial in order to get information about densities
of random variables, and Malliavin covariance matrices as well as non-degenerate random
variables will feature importantly in the sequel.

Definition 2.9. Let F = (F 1, . . . , F n) be a random vector whose components are in D∞(H).
Define the Malliavin covariance matrix of F by

γF = (〈DF i,DF j〉H)1≤i,j≤n. (2.25)

Then F is called non-degenerate if γF is invertible a.s. and

(det γF )−1 ∈ ∩p≥1L
p(Ω).

It is a classical result that the law of a non-degenerate random vector F = (F 1, . . . , F n)
admits a smooth density with respect to the Lebesgue measure on Rn.

11



3 Proof of main results.

In this section, we prove Theorem 1.1 and Theorem 1.3. We emphasize that our analysis
relies crucially on the uniform ellipticity of the vector fields Vi’s in equation (1.1), which is
spelled out explicitly below.

Uniform Ellipticity Assumption. The C∞b vector fields V = {V1, . . . , Vd} are such that

Λ1|ξ|2 ≤ ξ∗V (x)V (x)∗ξ ≤ Λ2|ξ|2, ∀x, ξ ∈ RN , (3.1)

with some constants Λ1,Λ2 > 0, where (·)∗ denotes matrix transpose.

We now split our proofs in two subsections, corresponding respectively to Theorem 1.1 and
Theorem 1.3.

3.1 Proof of the distance comparison

In order to prove Theorem 1.1, recall first that Φt(x; ·) : H̄ → C[0, 1] is the deterministic Itô
map associated to equation (1.1). For x, y ∈ RN , set

Πx,y ,
{
h ∈ H̄ : Φ1(x;h) = y

}
(3.2)

the set of Cameron-Martin paths that joining x to y though the Itô map. Under our assump-
tion (3.1) it is easy to construct an h ∈ H̄ ∈ Πx,y explicitly, which will ease our computations
later on.

Lemma 3.1. Let V = {V1, . . . , Vd} be vector fields satisfying the uniform elliptic assump-
tion (3.1). Given x, y ∈ RN , define

ht ,
ˆ t

0

V ∗(zs) · (V (zs)V
∗(zs))

−1 · (y − x)ds, (3.3)

where zt , (1− t)x+ ty is the line segment from x to y. Then h ∈ Πx,y, where Πx,y is defined
by relation (3.2).

Proof. Since H̄ = I
H+1/2

0+ (L2([0, 1])) contains smooth paths, it is obvious that h ∈ H̄. As far
as zt is concerned, the definition zt = (1 − t)x + ty clearly implies that z0 = x, z1 = y and
żt = y − x. In addition, since V V ∗(ξ) is invertible for all ξ ∈ RN under our condition (3.1),
we get

żt = y − x =
(
V V ∗(V V ∗)−1

)
(zt) · (y − x) = V (zt)ḣt,

where the last identity stems from the definition (3.3) of h. Therefore h ∈ Πx,y according to
our definition (3.2).
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Remark 3.2. The intuition behind Lemma 3.1 is very simple. Indeed, given any smooth
path xt with x0 = x, x1 = y, since the vector fields are elliptic, there exist smooth functions
λ1(t), . . . , λd(t), such that

ẋt =
d∑

α=1

λα(t)Vα(xt), 0 ≤ t ≤ 1.

In matrix notation, ẋt = V (xt) · λ(t). A canonical way to construct λ(t) is writing it as
λ(t) = V ∗(xt)η(t) so that from ellipticity we can solve for η(t) as

η(t) = (V (xt)V
∗(xt))

−1ẋt.

It follows that the path ht ,
´ t

0
λ(s)ds belongs to Πx,y.

Now we can prove the following result which asserts that the control distance function is
locally comparable with the Euclidean metric, that is Theorem 1.3 under elliptic assumptions.

Theorem 3.3. Let V = {V1, . . . , Vd} be vector fields satisfying the uniform elliptic assump-
tion (3.1). Consider the control distance d given in (1.4) for a given H > 1

4
. Then there

exist constants C1, C2 > 0 depending only on H and the vector fields, such that

C1|x− y| ≤ d(x, y) ≤ C2|x− y| (3.4)

for all x, y ∈ RN with |x− y| ≤ 1.

Proof. We first consider the case when H ≤ 1/2, which is simpler due to Lemma 2.8. Given
x, y ∈ RN , define h ∈ Πx,y as in Lemma 3.1. According to Lemma 2.8 and (1.4) we have

d(x, y)2 ≤ ‖h‖2
H̄ ≤ CH‖h‖2

W 1,2 .

Therefore, according to the definition (3.3) of h, we get

d(x, y)2 ≤ CH

ˆ 1

0

|V ∗(zs)(V (zs)V
∗(zs))

−1 · (y − x)|2ds ≤ CH,V |y − x|2,

where the last inequality stems from the uniform ellipticity assumption (3.1) and the fact
that V ∗ is bounded. This proves the upper bound in (3.4).

We now turn to the lower bound in (3.4). To this aim, consider h ∈ Πx,y. We assume
(without loss of generality) in the sequel that

‖h‖H̄ ≤ 2d(x, y) ≤ 2C2, (3.5)

where the last inequality is due to the second part of inequality (3.4) and the fact that
|x− y| ≤ 1. Then recalling the definition (3.2) of Πx,y we have

y − x =

ˆ 1

0

V (Φt(x;h))dht.
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According to Proposition 2.6 (specifically the embedding H̄ ⊆ Cq−var
0 ([0, 1];Rd) for q >

(H + 1/2)−1) and the pathwise variational estimate given by [15, Theorem 10.14], we have

|y − x| ≤ CH,V
(
‖h‖q−var ∨ ‖h‖qq−var

)
≤ CH,V

(
‖h‖H̄ ∨ ‖h‖qH̄

)
. (3.6)

Since q ≥ 1 and owing to (3.5), we conclude that

|y − x| ≤ CH,V ‖h‖H̄

for all x, y with |y − x| ≤ 1. Since h ∈ Πx,y is arbitrary provided (3.5) holds true, the lower
bound in (3.4) follows again by a direct application of (1.4).

Next we consider the case when H > 1/2. The lower bound in (3.4) can be proved with
the same argument as in the case H ≤ 1/2, the only difference being that in (3.6) we replace
H̄ ⊆ Cq−var

0 ([0, 1];Rd) by H̄ ⊆ CH
0 ([0, 1];Rd) and the pathwise variational estimate of [15,

Theorem 10.14] by a Hölder estimate borrowed from [11, Proposition 8.1].
For the upper bound in (3.4), we again take h ∈ Πx,y as given by Lemma 3.1 and estimate

its Cameron-Martin norm. Note that due to our uniform ellipticity assumption (3.1), one
can define the function

γt ≡
ˆ t

0

(V ∗(V V ∗)−1)(zs)ds =

ˆ t

0

g((1− s)x+ sy)ds, (3.7)

where g is a matrix-valued C∞b function. We will now prove that γ can be written as γ = Kϕ
for ϕ ∈ L2([0, 1]). Indeed, one can solve for ϕ in the analytic expression (2.6) for H > 1/2
and get

ϕ(t) = CHt
H− 1

2

(
D
H− 1

2

0+

(
s

1
2
−H γ̇s

))
(t).

We now use the expression (2.4) for DH−1/2

0+ , which yield (after an elementary change of
variable)

ϕ(t) = CHt
H− 1

2
d

dt

ˆ t

0

s
1
2
−H(t− s)

1
2
−Hg((1− s)x+ sy)ds

= CHt
H− 1

2
d

dt

(
t2−2H

ˆ 1

0

(u(1− u))
1
2
−Hg((1− tu)x+ tuy)du

)
= CHt

1
2
−H
ˆ 1

0

(u(1− u))
1
2
−Hg((1− tu)x+ tuy)du

+ CHt
3
2
−H
ˆ 1

0

(u(1− u))
1
2
−Hu∇g((1− tu)x+ tuy) · (y − x)du.

Hence, thanks to the fact that g and ∇g are bounded plus the fact that t ≤ 1, we get

|ϕ(t)| ≤ CH,V (t
1
2
−H + |y − x|),

from which ϕ is clearly an element of L2([0, 1]). Since |y − x| ≤ 1, we conclude that

‖γ‖H̄ = ‖ϕ‖L2([0,1]) ≤ CH,V .
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Therefore, recalling that h is given by (3.3) and γ is defined by (3.7), we end up with

d(x, y) ≤ ‖h‖H̄ =

∥∥∥∥(ˆ ·
0

(V ∗(V V ∗)−1)(zs)ds

)
· (y − x)

∥∥∥∥
H̄

= ‖γ‖H̄|y − x| ≤ CH,V |y − x|.

This concludes the proof.

3.2 Lower bounds for the density

With Theorem 3.3 in hand, we are now ready to state Theorem 1.3 rigorously and prove it.
Specifically, our main local bound on the density of Xt takes the following form.

Theorem 3.4. Let p(t, x, y) be the density of the solution Xt to equation (1.1). Under the
uniform ellipticity assumption (3.1), there exist constants C1, C2, τ > 0 depending only on
H and the vector fields V , such that

p(t, x, y) ≥ C1

tNH
(3.8)

for all (t, x, y) ∈ (0, 1]× RN × RN satisfying |x− y| ≤ C2t
H and t < τ .

Remark 3.5. From Theorem 3.3, we know that |Bd(x, t
H)| � tNH when t is small. Therefore,

Theorem 1.3 becomes the following result, which is consistent with the intuition that the
density p(t, x, y) of the solution to equation (1.1) should behave like the Gaussian kernel:

p(t, x, y) � C1

tNH
exp

(
−C2|y − x|2

t2H

)
.

The main idea behind the proof of Theorem 3.4 is to translate the small time estimate
in (3.8) into a large deviation estimate. To this aim, we will first recall some preliminary
notions taken from [4]. By a slight abuse of notation, for any sample path w of B we will call
w 7→ Φt(x;w) the solution map of the SDE (1.1). From the scaling invariance of fractional
Brownian motion, it is not hard to see that

Φt(x;B)
law
= Φ1(x; εB), (3.9)

where ε , tH . Therefore, since the random variable Φt(x;B) is nondegenerate under our
standing assumption (3.1), the density p(t, x, y) can be written as

p(t, x, y) = E [δy (Φ1(x; εB))] . (3.10)

Starting from expression (3.10), we now label a proposition which gives a lower bound
on p(t, x, y) in terms of some conveniently chosen shifts on the Wiener space.
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Proposition 3.6. In this proposition, Φt stands for the solution map of equation (1.1). The
vector fields {V1, . . . , Vd} are supposed to satisfy the uniform elliptic assumption (3.1). Then
the following holds true.

(i) Let Φt be the solution map of equation (1.1), h ∈ H̄, and let

Xε(h) ,
Φ1(x; εB + h)− Φ1(x;h)

ε
. (3.11)

Then Xε(h) converges in D∞ to X(h) uniformly in h ∈ H̄ with ‖h‖H̄ ≤M (for any M > 0).
Moreover X(h) is a RN -valued centered Gaussian random variable whose covariance matrix
will be specified below.
(ii) Let ε > 0 and consider x, y ∈ RN such that d(x, y) ≤ ε, where d(·, ·) is the distance
considered in Theorem 3.3. Choose h ∈ Πx,y so that

‖h‖H̄ ≤ d(x, y) + ε ≤ 2ε. (3.12)

Then we have

E [δy (Φ1(x; εB))] ≥ Cε−N · E
[
δ0 (Xε(h)) e−I(

h
ε )
]
. (3.13)

Proof. The first statement is proved in [4]. For the second statement, according to the
Cameron-Martin theorem, we have

E [δy (Φ1(x; εB))] = e−
‖h‖2H̄
2ε2 E

[
δy (Φ1(x; εB + h)) e−I(

h
ε )
]
,

where we have identified H̄ with H through R and recall that I : H → C1 is the Wiener
integral operator introduced in Section 2.1. Therefore, thanks to inequality (3.12), we get

E [δy (Φ1(x; εB))] ≥ C · E
[
δy (Φ1(x; εB + h)) e−I(

h
ε )
]
.

In addition we have chosen h ∈ Πx,y, which means that Φ1(x;h) = y. Thanks to the scaling
property of the Dirac delta function in RN , we get

p(t, x, y) = E [δy (Φ1(x; εB))] ≥ Cε−N · E
[
δ0

(
Φ1(x; εB + h)− Φ1(x;h)

ε

)
e−I(

h
ε )
]
.

Our claim (3.13) thus follows from the definition (3.11) of Xε(h).

Let us now describe the covariance matrix of X(h) introduced in Proposition 3.6. For
this, we recall again that Φ is the application defined on H̄ by the deterministic Itô map
associated to (1.1). The Jacobian of Φt(· ;h) : RN → RN is denoted by J(· ;h).

First, it is easy to see that the deterministic Malliavin differential DlΦt := 〈DΦt(x, h), l〉H̄
of Φ satisfies

DlΦt =
d∑
i=1

ˆ t

0

∂Vi(Φs(x;h))DlΦsdh
i
s +

d∑
i=1

ˆ t

0

Vi(Φs(x;h))dlis, for all l ∈ H̄, (3.14)
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where D is the Malliavin derivative operator. Comparing (3.14) to the equation satisfied by
J(x;h), it is standard from ODE theory that

〈DΦt(x;h), l〉H̄ = Jt(x;h) ·
ˆ t

0

J−1
s (x;h) · V (Φs(x;h))dls. (3.15)

According to the pairing (2.13), when viewed as an H-valued functional, we have

(DΦi
t(x;h))s =

(
Jt(x;h)J−1

s (x;h)V (Φs(x;h))
)i
1[0,t](s), 1 ≤ i ≤ N. (3.16)

Next, observe that the Malliavin differential of Xt(h) := limε↓0(Φ(x; εB + h) − Φt(x;h))/ε
satisfies the same equation as (3.14), which is deterministic. This implies that Xt(h) is a
Gaussian random variable and the N × N covariance matrix of Xt(h) admits the following
representation

Cov(Xt(h)) ≡ ΓΦt(x;h) = 〈DΦt(x;h), DΦt(x;h)〉H. (3.17)

With (3.17) in hand, a crucial point for proving Theorem 3.4 is the fact that ΓΦ1(x;h) is
uniformly non-degenerate with respect to all h. This is the content of the following result
which is another special feature of ellipticity that fails in the hypoelliptic case. Its proof is
an adaptation of the argument in [4] to the deterministic context.

Lemma 3.7. Let M > 0 be a localizing constant. Consider the Malliavin covariance ma-
trix ΓΦ1(x;h) defined by (3.17). Under the uniform ellipticity assumption (3.1), there exist
C1, C2 > 0 depending only on H,M and the vector fields, such that

C1 ≤ det ΓΦ1(x;h) ≤ C2 (3.18)

for all x ∈ RN and h ∈ H̄ with ‖h‖H̄ ≤M .

Proof. We consider the cases of H > 1/2 and H ≤ 1/2 separately. We only study the
lower bound of ΓΦ1(x;h) since the upper bound is standard from pathwise estimates by (3.16)
and (3.17), plus the fact that ‖h‖H ≤M .

(i) Proof of the lower bound when H > 1/2. According to relation (3.17) and the expression
for the inner product in H given by [27, equation (5.6)], we have

ΓΦ1(x;h) = CH

d∑
α=1

ˆ
[0,1]2

J1J
−1
s Vα(Φs)V

∗
α (Φt)(J

−1
t )∗J∗1 |t− s|2H−2dsdt,

where we have omitted the dependence on x and h for Φ and J inside the integral for
notational simplicity. It follows that for any z ∈ RN , we have

z∗ΓΦ1(x;h)z = CH

ˆ
[0,1]2
〈ξs, ξt〉Rd |t− s|2H−2dsdt, (3.19)
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where ξ is the function in H defined by

ξt , V ∗(Φt)(J
−1
t )∗J∗1z. (3.20)

According to an interpolation inequality proved by Baudoin-Hairer (cf. [2, Proof of Lemma
4.4]), given γ > H − 1/2, we have

ˆ
[0,1]2
〈fs, ft〉Rd |t− s|2H−2dsdt ≥ Cγ

(´ 1

0
vγ(1− v)γ|fv|2dv

)2

‖f‖2
γ

(3.21)

for all f ∈ Cγ([0, 1];Rd). Observe that, due to our uniform ellipticity assumption (3.1) and
the non-degeneracy of Jt, we have

inf
0≤t≤1

|ξt|2 ≥ CH,V,M |z|2. (3.22)

Furthermore, recall that Φt is driven by h ∈ H̄. We have also seen that H̄ ↪→ CH
0 whenever

H > 1/2. Thus for H − 1/2 < γ < H, we get ‖Φt‖γ ≤ CH,V ‖h‖γ; and the same inequality
holds true for the Jacobian J in (3.20). Therefore, going back to equation (3.20) again, we
have

‖ξ‖2
γ ≤ CH,V,M‖h‖H̄ |z|2 ≤ CH,V,M |z|2, (3.23)

where the last inequality stems from our assumption ‖h‖H̄ ≤ M . Therefore, taking ft = ξt
in (3.21), plugging inequalities (3.22) and (3.23) and recalling inequality (3.19), we conclude
that

z∗ΓΦ1(x;h)z ≥ CH,V,M |z|2

uniformly for ‖h‖H̄ ≤M and the result follows.

(ii) Proof of the lower bound when H ≤ 1/2. Recall again that (3.17) yields

z∗ΓΦ1(x;h)z = ‖z∗DΦ1(x;h)‖2
H.

Then owing to the continuous embedding H ⊆ L2([0, 1]) proved in Lemma 2.8, and expres-
sion (3.16) for DΦt, we have for any z ∈ RN ,

z∗ΓΦ1(x;h)z ≥ CH‖z∗DΦ1(x;h)‖2
L2([0,1])

= CH

ˆ 1

0

z∗J1J
−1
t V (Φt)V

∗(Φt)(J
−1
t )∗J∗1zdt.

We can now invoke the uniform ellipticity assumption (3.1) and the non-degeneracy of Jt in
order to obtain

z∗ΓΦ1(x;h)z ≥ CH,V,M |z|2

uniformly for ‖h‖H̄ ≤M . Our claim (3.18) now follows as in the case H > 1/2.
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With the preliminary results of Proposition 3.6 and Lemma 3.7 in hand, we are now able
to complete the proof of Theorem 3.4.

Proof of Theorem 3.4. Recall that Xε(h) is defined by (3.11). According to our preliminary
bound (3.13), it remains to show that

E
[
δ0 (Xε(h)) e−I(

h
ε )
]
≥ CH,V (3.24)

uniformly in h for ‖h‖H̄ ≤ 2ε when ε is small enough. The proof of this fact consists of the
following two steps:

(i) Prove that E[δ0(X(h))e−I(h/ε)] ≥ CH,V for all ε > 0 and h ∈ H̄ with ‖h‖H̄ ≤ 1;
(ii) Upper bound the difference

E
[
δ0 (Xε(h)) e−I(

h
ε )
]
− E

[
δ0(X(h))e−I(

h
ε )
]
,

and show that it is small uniformly in h for ‖h‖H̄ ≤ 2ε when ε is small. We now treat the
above two parts separately.
Proof of item (i): Recall that the first chaos C1 has been defined in Section 2.1. then observe
that the random variable X(h) = (X1(h), ..., XN(h)) introduced in Proposition 3.6 sits in
C1. We decompose the Wiener integral I(h/ε) as

I (h/ε) = Gε
1 +Gε

2,

where Gε
1 and Gε

2 satisfy

Gε
1 ∈ Span{X i(h); 1 ≤ i ≤ N}, Gε

2 ∈ Span{X i(h); 1 ≤ i ≤ N}⊥

where the orthogonal complement is considered in C1. With this decomposition in hand, we
get

E
[
δ0(X(h))e−I(

h
ε )
]

= E
[
δ0(X(h))e−G

ε
1
]
· E
[
e−G

ε
2
]
.

Furthermore, E[eG] ≥ 1 for any centered Gaussian random variable G. Thus

E
[
δ0(X(h))e−I(

h
ε )
]
≥ E

[
δ0(X(h))e−G

ε
1
]
. (3.25)

Next we approximate δ0 above by a sequence of function {ψn;n ≥ 1} compactly supported
in B(0, 1/n) ⊂ RN . Taking limits in the right hand-side of (3.25) and recalling that Gε

1 ∈
Span{X i(h); 1 ≤ i ≤ N}, we get

E
[
δ0(X(h))e−I(

h
ε )
]
≥ E[δ0(X(h))].

We now resort to the fact that X(h) is a Gaussian random variable with covariance matrix
ΓΦ1(x;h) by (3.17), which satisfies relation (3.18). This yields

E
[
δ0(X(h))e−I(

h
ε )
]
≥ 1

(2π)
N
2

√
det ΓΦ1(x;h)

≥ CH,V ,
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uniformly for ‖h‖H̄ ≤ 1. This ends the proof of item (i).

Proof of item (ii): By using the integration by parts formula in Malliavin’s calculus (see e.g.,
[27, Proposition 2.1.4], we have

E[δ0(X(h))e−I(h/ε)] = E
[
1{X(h)≥0}H(X(h), I(h/ε))

]
,

where X(h) ≥ 0 is interpreted component-wise, and H(X(h), I(h/ε)) is a random variable
which can be expressed explicitly in terms of the Malliavin derivatives of I(h/ε), X(h) and
the inverse Malliavin covariance matrix MX(h) of X(h). Similarly, we have

E[δ0(Xε(h))e−I(h/ε)] = E
[
1{Xε(h)≥0}H(Xε(h), I(h/ε))

]
.

Therefore, ∣∣E[δ0(X(h))e−I(h/ε)]− E[δ0(Xε(h))e−I(h/ε)]
∣∣ (3.26)

≤
∣∣E [(1{Xε(h)≥0} − 1{X(h)≥0]}

)
H(X(h), I(h/ε))

]∣∣
+
∣∣E [1{Xε(h)≥0} (H(Xε(h), I(h/ε))−H(X(h), I(h/ε)))

]∣∣ .
Note that since ‖h‖H̄ ≤ 2ε the random variable H(X(h), I(h/ε)) has bounded p-th moment
(uniform in ε) for all p ≥ 1. It is thus clear from Proposition 3.6-(i) that the first term in
the right-hand side of (3.26) can be made small when ε is small.

As for the second term in the right-hand side of (3.26), first note from standard argument
(indeed, similar to the argument in the proof of Lemma 3.7), one can show that detMXε(h)

has negative moments of all orders uniformly for all ε ∈ (0, 1) and bounded h ∈ H̄. Together
with the convergence in Proposition 3.6-(i), we can show that

detM−1
Xε(h)

Lp

−→ detM−1
Φ1(x;h), as ε→ 0, (3.27)

uniformly for ‖h‖H̄ ≤ 1 for each p ≥ 1. Now recall that H(X(h), I(h/ε)) is a random
variable which can be expressed explicitly in terms of the Malliavin derivatives of I(h/ε),
X(h) and the inverse Malliavin covariance matrix MX(h) of X(h). The convergence in (3.27)
and Proposition 3.6-(i) is sufficient to conclude that the second term in the right-hand side
of (3.26) can be made small when ε is small. Therefore, the assertion of item (ii) holds.

Once item (i) and (ii) are proved, it is easy to obtain (3.24) and the details are omitted.
This finishes te proof of Theorem 3.4.

We conclude our discussion by a remark regarding SDE with a drift.

Remark 3.8. One can also consider the SDE in (1.1) but with a smooth and bounded drift

Zt = x+

ˆ t

0

V0(Zs)ds+
d∑
i=1

ˆ t

0

Vi(Zs)dB
i
s, t ∈ [0, 1]. (3.28)
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It turns our the control distance of the system (3.28) (in terms of large deviation etc.) is
the same as the one without a drift; that is, the same as being defined in (1.4). Hence,
the corresponding local lower bound for the density function of Zt is the same as stated in
Theorem 1.6. In order to see this, recall that Φt(x; ·) : H̄ → C[0, 1] is the deterministic Itô
map associated to equation (1.1). For each ε > 0 we further define Φε

t(x; ·) to be the solution
map of the equation

Zε
t = x+ ε

1
H

ˆ t

0

V0(Zε
s)ds+

d∑
i=1

ˆ t

0

Vi(Z
ε
s)dB

i
s, t ∈ [0, 1].

That is, Zε
t = Φε

t(x;B). Similar to (3.9), we have for ε = tH ,

Zt = Φ1
t (x;B)

law
= Φε

1(x; εB).

Now we proceed as in the proof of Theorem 1.6, and denote by p(t, x, z) the density function
of Zt. Equation (3.10) becomes

p(t, x, z) = E [δz (Φε
1(x; εB))] = E [δz (Φ1(x; εB) + (Φε

1(x; εB)− Φ1(x; εB)))] .

As a result, if we still pick h ∈ Πx,z as before (that is, Φ1(x, h) = z), the expectation on
the right hand-side of (3.13) becomes

E
[
δ0

(
Xε(h) +

Φε
1(x; εB + h)− Φ1(x, εB + h)

ε

)
e−I(

h
ε )
]
.

The observation is that rough differential equations are Lipschitz continuous with respect to
the vector fields. Hence the extra term

Φε
1(x; εB + h)− Φ1(x, εB + h)

ε

is of order ε
1
H
−1, and can be considered negligible since 0 < H < 1. Therefore, all the

previous argument goes through as if there was no drift. We leave it to the enterprising
readers to fill in the details.
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